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In the work presented here, a method is developed to predict the stationary random
response of a beam which has been modi"ed by the attachment of a damped, lumped
assembly of linear mechanical elements. The initial development treats a general beam
system with attached linear elements. Two examples are presented with a cantilever beam
modi"ed, respectively, by a tip damper and a damped vibration absorber attached at the tip.
The attached vibration absorber presents an interesting optimization problem to "nd the
damping that minimizes the mean-square motion at the beam tip.
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1. INTRODUCTION

In this work, the random response of two damped, modi"ed beam systems is considered
namely a cantilever beam with a viscous damper attached at the free end and that of
a damped dynamic vibration absorber attached at the free end. There is a wealth of
literature having to do with damped modi"ed systems. The "rst report of such activity was
by Duncan [1] in which he de"ned the concept of receptance and used receptances to
calculate natural frequencies of simple combined mechanical systems. A nice explanation of
this technique is given in the book of Bishop and Johnson [2]. Early papers by Young
considered the combination of distributed and lumped parameter mechanical elements
[3, 4]. There have been many papers over the past three decades which have considered the
dynamics of vibratory systems in the presence of modi"cations involving lumped parameter
elements. The pivotal works are those of Wissenberger [5], Jacquot and Soedel [6],
Pomazal and Snyder [7], Dowell [8], and Hallquist and Snyder [9].

The e!ect of elastic constraints on the random vibration of damped linear structures was
considered by Howell [10]. More recently, the random vibration of combined linear
systems has been considered by Bergman and Nicholson [11] in which they employ the
normal mode method and Green's functions to express the cross-correlation functions and
cross-spectral density functions of the beam response. Still more recently, Kareem and Sun
[12] have considered the problem of random vibration of a structure carrying a tank of
sloshing #uid which is modelled as a series of parallel attached linear oscillators. The theory
given adds an additional number of degrees of freedom to handle the additional attached
oscillators. The solution to the resulting problem is then given as the usual lumped
parameter eigensolution and does not build on knowledge of the problem prior to the
addition of the tank of #uid. The random vibration of a damped tapered beam carrying
masses is treated in the work of Yadav et al. wherein the "rst and second order statistics of
the responses are calculated for a cantilever beam with a base excitation [13].
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In this work, the author uses the known eigenstructure of an arbitrary beam to infer the
response character of the system composed of the beam and an attached damped
substructure. An alternative approach would be to incorporate additional degrees of
freedom and solve a new eigenvalue}eigenvector problem to calculate the mean-square
response.

2. TRANSFER FUNCTION FOR THE COMBINED SYSTEM

The methodology followed here is that of reference [14]. Consider a Bernoulli}Euler
beam which is driven by two forcing functions one of which is uniform in space denoted by
w(t) and a concentrated force p (t) generated by an assembly of attached linear passive
elements located at x"a as illustrated in Figure 1. The beam is a linear, time-invariant
system and as such the concept of a transfer function and the principle of superposition are
valid. The response at some point x on the beam is thus given by

>(x, s)"G
1
(x, s)P(s)#G

2
(x, s)=(s), (1)

where P (s) and=(s) are, respectively, the Laplace transforms of p(t) and w (t). If the force
P(s) is generated by a collection of passive, linear elements attached to the beam at location
x"a,

P (s)"!H(s)>(a, s), (2)

where H (s) may be thought of as the displacement driving-point impedance of the attached
mechanical elements. Relation (2) may be substituted into equation (1) to yield

>(x, s)"!G
1
(x, s)H(s)>(a, s)#G

2
(x, s)=(s). (3)

Since equation (3) holds for all x, then it must hold at x"a, so that

>(a, s)"!G
1
(a, s)H(s)>(a, s)#G

2
(a, s)=(s). (4)
Figure 1. Section of the beam with two forcing functions.
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This relation may be solved for the ratio of >(a, s)/=(s) to yield the transfer function

M(a, s)"
>(a, s)

=(s)
"

G
2
(a, s)

1#G
1
(a, s)H(s)

. (5)

In turn >(a, s) in equation (3) may be eliminated using relation (5) to give

>(x, s)"G
2
(x, s)=(s)!G

1
(x, s)M(a, s)H(s)=(s), (6)

so the transfer function between=(s) and >(x, s) is

M(x, s)"
>(x, s)

=(s)
"G

2
(x, s)!G

1
(x, s)M(a, s)H(s), (7)

where M(a, s) has already been given in relation (5).

3. THE STATIONARY RANDOM VIBRATION PROBLEM

If a damped modi"ed beam is forced by a single forcing function w(t) which is a zero
mean, second order, stationary random process with a power spectral density S

w
(u), it is the

goal here to predict the mean-square response at any point x on the beam. In the previous
section, it has been shown that there exists a transfer function M(x, s) relating the response
at a point x,>(x, s), to forcing function=(s). If the modi"cation to the beam is of a passive,
dissipative nature then M(x, s) has only poles which lie in the left half of the complex s-plane
and hence the frequency response function M(x, ju) has meaning. If the power spectrum of
the input S

w
(u) and M(x, ju) are known then the power spectral density of the response at

point x, y(x, t) is

S
y
(x,u)"DM(x, ju)D2S

w
(u). (8)

Note that this response power spectrum is a function of location x and hence will be
di!erent at di!erent locations. The mean-square response at location x is given by
integrating the power spectral density or

p2
y
(x)"

1

2n P
=

~=

DM(x, ju)D2S
w
(u) du. (9)

4. TRANSFER FUNCTIONS FOR THE BEAM

Consider the motion of the beam due to the concentrated force p (t) located at x"a. The
beam is of length ¸, mass per unit length oA, with bending sti!ness EI. The boundary
conditions are any combination of pinned, clamped or free. The problem is described by the
Bernoulli}Euler equation for small motions of slender beams,

EI
L4y
Lx4

#oA
L2y
Lt2

"p (t) d (x!a). (10)
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The spatial boundary conditions dictate the eigenfunctions /
i
(x) and the eigenvalues

b
i
which are related to the natural frequencies by

u2
i
"b4

i

EI

oA
. (11)

The spatial Dirac delta function can be expanded in a generalized Fourier series of the
eigenfunctions as

d (x!a)"
=
+
i/1

c
i
/

i
(x), (12)

where due to the orthogonality of the eigenfunctions the c
i
are given by

c
i
"

P
L

0

d (x!a)/
i
(x) dx

P
L

0

/2
i
(x) dx

(13)

and the shifting property of the Dirac delta function yields

d(x!a)"K
i

=
+
i/1

/
i
(a)/

i
(x), (14)

where the K
i

is the reciprocal of the denominator integral of equation (13) which is
tabulated by Felgar [16] for various beam boundary conditions. The solution to equation
(10) may also be expanded in a series in the eigenfunctions as

y(x, t)"
=
+
i/1

q
i
(t)/

i
(x). (15)

Substitution of equations (15) and (12) into equation (10) and equating term by term gives
a set of ordinary di!erential equations in the generalized co-ordinates as

oAqK
i
#EIb4

i
q
i
"c

i
p (t), i"1, 2,2 . (16)

If the Laplace transform is taken and the initial conditions are ignored since only the
sinusoidal steady state solution is desired, the result is

Q
i
(s)"

c
i
P (s)

oAs2#EIb4
i

. (17)

The transfer function between the forcing function P (s) and the beam displacement at
location x is

G
1
(x, s)"

>(x, s)

P(s)
"

=
+
i/1

c
i
/
i
(x)

oAs2#EIb4
i

. (18)
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In a similar fashion, the transfer function between the uniform force =(s) and the
displacement of the beam at location x can be shown to be

G
2
(x, s)"

>(x, s)

=(s)
"

=
+
i/1

d
i
/
i
(x)

oAs2#EIb4
i

, (19)

where the d
i
are de"ned by

d
i
"

P
L

0

/
i
(x) dx

P
L

0

/2
i
(x) dx

. (20)

As mentioned previously, the numerator and denominator integrals have been tabulated
[16] and are functions of the beam boundary conditions.

5. THE CANTILEVER BEAM

Consider now the developments of the previous section applied to a cantilever beam. The
eigenfunctions for the beam are

/
i
(x)"cosh b

i
x!cosb

i
x!a

i
(sinhb

i
x!sinb

i
x), (21)

where the values of b
i
¸ are the ordered positive roots of the transcendental equation

1#cos b¸ cos b¸"0. (22)

The values of b
i
¸ are tabulated by Young and Felgar [15] as are the values of a

i
for

various beam boundary conditions. The integrals involved in the evaluation of the c
i
and d

i
(equations (13) and (20)) have been tabulated by Felgar [16] for all ordinary boundary
conditions. The value of K

i
in equation (14) for a cantilever beam is 1/¸ so the c

i
are

c
i
"

/
i
(a)

¸

. (23)

In a similar fashion, the d
i
from relation (17) are

d
i
"

2a
i

b
i
¸

. (24)

The transfer function G
1
(x, s) is then

G
1
(x, s)"

1

¸

=
+
i/1

/
i
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i
(x)
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i

(25)

and the transfer function G
2
(x, s) between the tip force and the motion at a point x is

G
2
(x, s)"2

=
+
i/1

a
i
/
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(x)

b
i
¸ (oAs2#EIb4

i
)
. (26)
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6. EXAMPLE 1 (CANTILEVER BEAM WITH A TIP DAMPER)

In this case, the cantilever beam is modi"ed by a viscous damper at the free end as
illustrated in Figure 2 so the transfer function for the attached element is

H(s)"bs (27)

and a"¸. The transfer function between=(s) and the motion of the tip is given by relation
(5) and the previously derived transfer functions of relations (25) and (26), to be

M(¸, s)"
>(¸, s)

=(s)
"

(2/¸)+=
i/1

a
i
/
i
(¸)/b

i
(oAs2#EIb4

i
)

1#(bs/¸)+=
i/1

/2
i
(¸)/(oAs2#EIb4

i
)
. (28)

The non-dimensional frequency response function is

EIM(¸, ju)

¸4
"

2 +=
i/1

a
i
/
i
(¸)/(b

i
¸)5(1!(u/u

i
)2)

1#(b¸3ju/EI)+=
i/1

/2
i
(¸)/(b

i
¸)4(1!(u/u

i
)2)

. (29)

Let us now non-dimensionalize frequency by de"ning the frequency ratio

f"u/u
1

(30)

and c
i
to be the ratio of the ith natural frequency to the "rst natural frequency

c
i
"u

i
/u

1
. (31)

Also de"ne a non-dimensional damping coe$cient B to be

B"

b¸(b
1
¸)2

JEIoA
. (32)

Using equations (30)} (32) the dimensionless tip-frequency response function in terms of the
dimensionless frequency variable f is

EIM(¸, j f )

¸4
"

+=
i/1

2a
i
/
i
(¸)/(b

i
¸)5(1!( f/c

i
)2)

1#j fB+=
i/1

/2
i
(¸)/(b

i
¸)4(1!( f/c

i
)2)

. (33)

With this being known, the frequency response of any other point on the beam can be
evaluated using relation (7).
Figure 2. Cantilever beam with a tip damper.
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Assume now that the beam is driven by white noise w(t) with constant power spectral
density S

w
. Thus, the dimensionless tip-response power spectral density is, from relation (8),

(EI)2S
y
(¸, u)

¸8S
w

"K
+=

i/1
2a

i
/
i
(¸)/(b

i
¸)5(1!( f/c

i
)2)

1#j fB+=
i/1

/2
i
(¸)/(b

i
¸)4(1!( f/c

i
)2) K

2
. (34)

This function is illustrated in Figure 3 and it is interesting to note that the e!ect of
increasing the damping parameter B is to lower the peaks in the tip-response power spectral
density function. Employing relation (7) the dimensionless spectral density of the midpoint
of the beam is as illustrated in Figure 4. Note that the e!ect of increasing the damping is to
eliminate the resonances near the cantilever natural frequencies and to induce new
resonances at frequencies that approach those of a clamped}pinned beam.

One issue of importance is the convergence of the series in relation (33). It is seen that
both series converge rapidly due to the denominator factor of b

i
¸ of powers four and "ve

respectively. All calculations presented here were accomplished with "ve terms, however,
they were also done with six terms with essentially no discernable di!erence in both the
numerical and graphical results.

To evaluate the mean-square motions the integral of relation (9) must be evaluated. This
means that the modi"ed system poles must be calculated so the residue theorem can be
employed. Although using MATLAB this task is reasonable, it is perhaps easier to evaluate
the integral numerically using MATLAB by employing the trapezoidal rule or Simpson's
rule. In this case, the trapezoidal rule is employed and the dimensionless mean-square
motion de"ned as [p

y
(¸)EI]2/S

w
u

1
¸8. The results of the numerical integrations are shown

in Figure 5 as a function of the dimensionless damping parameter B.
Figure 3. Dimensionless power spectral density of tip response for the cantilever beam with a tip damper from
relation (34).



Figure 4. Dimensionless midspan displacement power spectral density for the cantilever beam with a tip
damper from relation (7).
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When performing the integration numerically, care must be taken to use a small enough
dimensionless frequency increment to assure that the spectral energy under lightly damped
resonance peaks is captured. This may be checked by halving the increment and repeating
the integration process.

Similar results for the beam midpoint are shown in Figure 6. It is interesting to note that
for larger values of B than illustrated the mean-square motion begins to increase. This
occurs because for large B the tip motion approaches zero, the energy dissipation becomes
small and thus the mean-square motion of the interior points of the beam increases. For
large B the beam appears to be a clamped}pinned beam.

7. EXAMPLE 2 (CANTILEVER BEAM WITH A DYNAMIC VIBRATION ABSORBER)

In this example a cantilever beam is modi"ed by a damped dynamic vibration absorber
attached at the free end as illustrated in Figure 7. The transfer function relating force to
displacement at the point of attachment is

H(s)"
ms2(bs#k)

ms2#bs#k
. (35)

The transfer function between=(s) and the tip motion>(¸, s) is given by expression (5) after
substitution of relations (18) and (19) for G

1
(¸, s) and G

2
(¸, s) and relation (35) for H (s). It is



Figure 5. Dimensionless mean-square tip motion as a function of dimensionless damper coe$cient given by
integration of the power spectrum of Figure 3.

Figure 6. Dimensionless mean-square midspan motion as a function of dimensionless damper coe$cient by
integration of the power spectrum of Figure 4.
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Figure 7. Cantilever beam with an attached dynamic vibration absorber at the tip.
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given by

M(¸, s)"
>(¸, s)

=(s)
"
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i/1

a
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i
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i
(oAs2#EIb4

i
)

1#(ms2(bs#k)/(ms2#bs#k))(1/¸)+=
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/2
i
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i
)
.

(36)

The non-dimensional frequency response is then

EIM(¸, ju)

¸4
"

2+=
i/1

a
i
/
i
(¸)/(b

i
¸)5(1!(u/u

i
)2)

1!(mu2( jub#k)/(!mu2#jub#k))(¸3/EI)+=
i/1

/2
i
(¸)/(b

i
¸)4(1!(u/u

i
)2)

.

(37)

Assume that the dynamic absorber is tuned to the "rst natural frequency of the beam so that
k/m"u2

a
"u2

1
and, as in the previous example, the frequency variable can be scaled with

respect to the "rst beam natural frequency so that

f"
u
u

1

"uS
m

k
. (38)

The absorber damping ratio f can be de"ned as

f"
b

2Jkm
. (39)

It is common to de"ne a mass ratio k as the ratio of the absorber mass to the beam mass or

k"
m

oA¸

. (40)

The non-dimensional frequency response in terms of the parameters just de"ned is

EIM(¸, j f )

¸4
"

+=
i/1

2a
i
/

i
(¸)/(b

i
¸)5(1!( f/c

i
)2)

1!k ( f2( j2f f#1)/(1!f 2#j2f f ))+=
i/1

/2
i
(¸)/c4

i
(1!( f/c

i
)2)

, (41)



Figure 8. Dimensionless power spectral density of tip response for the cantilever beam with an attached
dynamic vibration absorber at the tip from relation (42).
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where c
i
"b

i
/b

1
as in the previous example. If it is assumed that the forcing function w(t) is

white noise with constant power spectral density S
w

then the dimensionless power spectral
density function for the beam tip response is

(EI)2S
y
(¸, j f )

¸8S
w

"K
+=

i/1
2a

i
/
i
(¸)/(b

i
¸)5(1!( f/c

i
)2)

1!k ( f 2( j2f f#1)/(1!f 2#j2f f ))+=
i/1

/2
i
(¸)/c4

i
(1!( f/c

i
)2) K . (42)

This function for k"0)2 is shown in Figure 8 for various values of the absorber damping
ratio f. As is typical, the function of the absorber tuned to the "rst beam natural frequency is
to split the "rst resonance into two resonances while attenuating the response at the
previous resonance at the "rst natural frequency of the beam. Figure 9 illustrates the result
of relation (7) to calculate the power spectrum of the beam midpoint which has a character
similar to that of the tip.

The dimensionless mean-square response of the beam tip which is [p
y
(¸)EI]2/S

w
u

1
¸8

can then be given by relation (9) and has been evaluated for various damping ratios and
mass ratios as illustrated in Figure 10. It is interesting to note that for a given mass ratio
there is a damping ratio that yields a minimal mean-square motion and hence an interesting
optimization problem presents itself. Examination of Figure 10 indicates that as the mass
ratio k is increased the value of the damping ratio f for a minimum mean-square tip motion
increases. The damping ratio which yields the minimal mean-square tip motion is shown in
Figure 11 as a function of the mass ratio k.



Figure 9. Dimensionless midspan displacement power spectral density for the cantilever beam with an attached
dynamic vibration absorber at the tip from relation (7).

Figure 10. Mean-square tip motion as a function of absorber damping ratio for several mass ratios by
integration of the power spectrum of Figure 8.

452 R. G. JACQUOT



Figure 11. Optimal damping ratio for the absorber as a function of absorber mass ratio with the absorber tuned
to the "rst beam natural frequency.
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8. CONCLUSION

In this work, a method is developed to predict the response power spectral density
function and mean-square response of a damped modi"ed beam structure driven by
a second order stationary random process. It is assumed that there is only a single
modi"cation to the system that is composed of an assembly of linear, lumped mechanical
elements. This is not a serious limitation as the theory lends itself to multiple modi"cations.
The procedure lends itself to the optimization of such attached assemblies so as to minimize
the mean-square response at some location on the structure.

The method developed, as opposed to the particular examples presented, should be useful
to practitioners that are attempting to predict the mean-square responses of complex
structures to random force "elds.
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